Skip to main content

Graph Laplacian

· One min read
Hu Chen

G={V,E}\mathcal{G=\{V,E\}}, node set V={v1,...,vn}\mathcal{V}=\{v_1, ..., v_n\} and the undirected edge set E={e1,...,em}\mathcal{E}=\{e_1, ..., e_m\}.

Cause edge is undircted, for edge e=(i,j)e=(i,j), we let i<ji < j.

adjacency matrix A\bold{A}, graph Laplacian matrix L\bold{L}. incidence matrix Δ\Delta as m×nm\times n, define as if e=(i,j)e_{\ell}=(i,j) (i<ji < j), then \ell-th row is:

Δ=(0,...,1,...,1,...,0)\Delta_{\ell} = (0, ..., -1, ..., 1, ..., 0)

From node ii to node jj, edge \ell leaves node ii, and enters node jj.

Then

L=ΔΔ\bold{L} = \Delta^{\top} \Delta

Proof

Lij=k=1mΔkiΔkj\bold{L}_{ij} = \sum_{k=1}^m \Delta_{ki} \Delta_{kj}
  • If i=ji = j, then Lij=k=1mΔki2\bold{L}_{ij}= \sum_{k=1}^m \Delta_{ki}^2, since Δki=1\Delta_{ki}=-1 if edge kk leaves node ii, Δki=1\Delta_{ki}=1 if edge kk enters node ii, Lij\bold{L}_{ij} is degree of node ii
  • If iji \not= j, and there is an edge kk from node ii to node jj, then Δki=1\Delta_{ki}=-1, Δkj=1\Delta_{kj}=1, thus Lij=1\bold{L}_{ij}=-1
  • If iji \not= j, and there is no edge from node ii to node jj, for any edge kk, at least one of Δki\Delta_{ki} and Δkj\Delta_{kj} is 0, thus Lij=0\bold{L}_{ij}=0