G={V,E}, node set V={v1,...,vn} and the undirected edge set E={e1,...,em}.
Cause edge is undircted, for edge e=(i,j), we let i<j.
adjacency matrix A, graph Laplacian matrix L. incidence matrix Δ as m×n, define as if eℓ=(i,j) (i<j), then ℓ-th row is:
Δℓ=(0,...,−1,...,1,...,0) From node i to node j, edge ℓ leaves node i, and enters node j.
Then
L=Δ⊤Δ Proof
Lij=k=1∑mΔkiΔkj - If i=j, then Lij=∑k=1mΔki2, since Δki=−1 if edge k leaves node i, Δki=1 if edge k enters node i, Lij is degree of node i
- If i=j, and there is an edge k from node i to node j, then Δki=−1, Δkj=1, thus Lij=−1
- If i=j, and there is no edge from node i to node j, for any edge k, at least one of Δki and Δkj is 0, thus Lij=0