Skip to main content

Gamma Function

计算积分

I=et22dtI = \int_{-\infty}^{\infty}e^{-\frac{t^2}{2}}dt

其平方为

I2=ex22dxey22dy=ex2+y22dxdyI^2 = \int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx\int_{-\infty}^{\infty}e^{-\frac{y^2}{2}}dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2 + y^2}{2}}dxdy

极坐标变换:x=rcosθ,y=sinθx=r\cos\theta, y=\sin\theta,则

I2=002πrer22dθdr=2π0rer22dr=2πI^2 = \int_{0}^{\infty} \int_{0}^{2\pi} r e^{-\frac{r^2}{2}}d\theta dr=2\pi \int_{0}^{\infty} r e^{-\frac{r^2}{2}}dr=2\pi

I=2πI=\sqrt{2\pi}

Gamma函数:含参数 α\alpha 的积分

Γ(α)=0xα1exdx,α>0\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1}e^{-x}dx, \quad \alpha > 0
  • 性质: Γ(12)=π\Gamma(\frac{1}{2})=\sqrt{\pi},证明
    Γ(12)=0x12exdx\Gamma(\frac{1}{2}) = \int_{0}^{\infty} x^{-\frac{1}{2}}e^{-x}dx
    Let x=u2x=u^2dx=2ududx=2udu,thus x12=1ux^{-\frac{1}{2}}=\frac{1}{u},
0x12exdx=01ueu22udu=20eu2du=eu2du=12eu2du=122π=π\begin{aligned} \int_{0}^{\infty} x^{-\frac{1}{2}}e^{-x}dx &= \int_{0}^{\infty} \frac{1}{u} e^{-u^2} 2u du \\ &= 2\int_{0}^{\infty}e^{-u^2} du \\ &= \int_{-\infty}^{\infty}e^{-u^2} du \\ &= \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty}e^{-u^2} du \\ & = \frac{1}{\sqrt{2}} \sqrt{2\pi}=\sqrt{\pi} \end{aligned}

对于高斯分布的熵计算,我们可以通过以下步骤将其表达式进行化简:

  1. 将高斯分布的概率密度函数代入熵的定义:

    H(X)=f(x)logf(x)dx1dx2dxnH(\mathbf{X}) = -\int \ldots \int f(\mathbf{x}) \log f(\mathbf{x}) \, dx_1 dx_2 \ldots dx_n
  2. 将高斯分布的概率密度函数进行展开:

    f(x)=1(2π)nΣexp(12(xμ)TΣ1(xμ))f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)
  3. 将展开后的概率密度函数代入熵的计算式中,并进行对数运算:

    H(X)=(1(2π)nΣexp(12(xμ)TΣ1(xμ)))log(1(2π)nΣexp(12(xμ)TΣ1(xμ)))dx1dx2dxn=(1(2π)nΣexp(12(xμ)TΣ1(xμ)))(log((2π)nΣ)12(xμ)TΣ1(xμ))dx1dx2dxn=12log((2πe)nΣ)\begin{aligned} H(\mathbf{X}) &= -\int \ldots \int \left(\frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)\right) \log \left(\frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)\right) \, dx_1 dx_2 \ldots dx_n \\ &= -\int \ldots \int \left(\frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right)\right) \left(-\log \left(\sqrt{(2\pi)^n |\Sigma|}\right) - \frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})\right) \, dx_1 dx_2 \ldots dx_n \\ &= \frac{1}{2}\log((2\pi e)^n|\Sigma|) \end{aligned}
  4. 在上述化简过程中,我们利用了以下性质:

    • log(ab)=loga+logb\log(ab) = \log a + \log b
    • log(ex)=x\log(e^x) = x
    • exp(12(xμ)TΣ1(xμ))dx1dx2dxn=(2π)n2Σ12\int \exp(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu})) \, dx_1 dx_2 \ldots dx_n = (2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}

综上所述,我们得到了高斯分布熵的简化表达式 H(X)=12log((2πe)nΣ)H(\mathbf{X}) = \frac{1}{2}\log((2\pi e)^n|\Sigma|)